2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMMSP-3.3
Paper Title AN ATTENTION-SEQ2SEQ MODEL BASED ON CRNN ENCODING FOR AUTOMATIC LABANOTATION GENERATION FROM MOTION CAPTURE DATA
Authors Min Li, Zhenjiang Miao, Beijing Jiaotong University, China; Xiao-Ping Zhang, Ryerson University, Canada; Wanru Xu, Beijing Jiaotong University, China
SessionMMSP-3: Multimedia Synthesis and Enhancement
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Multimedia Signal Processing: Multimedia Applications
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Labanotation is an important notation system widely used for recording dances. Numerous methods have been proposed for automatic Labanotation generation from motion capture data. Recently, the sequence-to-sequence (seq2seq) model is proposed. However, the encoder of the model only encodes the temporal information of motion data, lacking the encoding for spatial information. And it is challenging for the decoder to align input and output sequences due to the imbalance of the sequence lengths. In this paper, we propose an attention-seq2seq model based on Convolutional Recurrent Neural Network (CRNN). The proposed model employs an encoder based on CRNN to learn the spatial-temporal information of motion data and applies an attention mechanism to align each target Laban symbol with relevant parts of the input motion data in decoding. Experiments show that the proposed method performs favorably against state-of-the-art algorithms in the automatic Labanotation generation task.