2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-5.5
Paper Title DUAL METRIC DISCRIMINATOR FOR OPEN SET VIDEO DOMAIN ADAPTATION
Authors Yatian Wang, Didi Chuxing, China; Xiaolin Song, Tianjin University, China; Yezhen Wang, Pengfei Xu, Runbo Hu, Hua Chai, Didi Chuxing, China
SessionSS-5: Domain Adaptation for Multimedia Signal Processing
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Special Sessions: Domain Adaptation for Multimedia Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Existing video domain adaptation methods focus on addressing closed set problems. However, it is nearly impossible to guarantee different domains share exactly the same set of categories in realistic scenarios. Hence, open set video domain adaptation (OSVDA) problem, which involves unknown categories, has achieved increasingly close attention. In this paper, we propose a seminal framework, which involves spatial and temporal information to address OSVDA problem. Besides, we design a novel discrimination module, i.e., Dual Metric Discriminator (DMD), to separate known and unknown categories based on implicit and explicit similarity metrics. We conduct comprehensive experiments on several benchmarks and achieve state-of-the-art performance with 40.4%, 33.7%, and 79.2% accuracy on UCF to HMDB, HMDB to UCF, and Kinetics to UCF scenarios respectively.