2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-14.5
Paper Title WARP-Q: QUALITY PREDICTION FOR GENERATIVE NEURAL SPEECH CODECS
Authors Wissam Jassim, University College Dublin, Ireland; Jan Skoglund, Michael Chinen, Google, United States; Andrew Hines, University College Dublin, Ireland
SessionAUD-14: Quality and Intelligibility Measures
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-QIM] Quality and Intelligibility Measures
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Good speech quality has been achieved using waveform matching and parametric reconstruction coders. Recently developed very low bit rate generative codecs can reconstruct high quality wideband speech with bit streams less than 3 kb/s. These codecs use a DNN with parametric input to synthesise high quality speech outputs. Existing objective speech quality models (e.g., POLQA, VISQOL) do not accurately predict the quality of coded speech from these generative models underestimating quality due to signal differences not highlighted in subjective listening tests. We present WARP-Q, a full-reference objective speech quality metric that uses dynamic time warping cost for MFCC speech representations. It is robust to small perceptual signal changes. Evaluation using waveform matching, parametric and generative neural vocoder based codecs as well as channel and environmental noise shows that WARP-Q has better correlation and codec quality ranking for novel codecs compared to traditional metrics in addition to versatility for general quality assessment scenarios.