2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-18.4
Paper Title BLIND AND NEURAL NETWORK-GUIDED CONVOLUTIONAL BEAMFORMER FOR JOINT DENOISING, DEREVERBERATION, AND SOURCE SEPARATION
Authors Tomohiro Nakatani, Rintaro Ikeshita, Keisuke Kinoshita, Hiroshi Sawada, Shoko Araki, NTT Corporation, Japan
SessionSPE-18: Speech Enhancement 4: Multi-channel Processing
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-ENHA] Speech Enhancement and Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract This paper proposes an approach for optimizing a Convolutional BeamFormer (CBF) that can jointly perform denoising (DN), dereverberation (DR), and source separation (SS). First, we develop a blind CBF optimization algorithm that requires no prior information on the sources or the room acoustics, by extending a conventional joint DR and SS method. For making the optimization computationally tractable, we incorporate two techniques into the approach: the Source-Wise Factorization (SW-Fact) of a CBF and the Independent Vector Extraction (IVE). To further improve the performance, we develop a method that integrates a neural network (NN) based source power spectra estimation with CBF optimization by an inverse-Gamma prior. Experiments using noisy reverberant mixtures reveal that our proposed method with both blind and NN-guided scenarios greatly outperforms the conventional state-of-the-art NN-supported mask-based CBF in terms of the improvement in automatic speech recognition and signal distortion reduction performance.