2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-33.4
Paper Title CAMP: A TWO-STAGE APPROACH TO MODELLING PROSODY IN CONTEXT
Authors Zack Hodari, University of Edinburgh, United Kingdom; Alexis Moinet, Sri Karlapati, Jaime Lorenzo-Trueba, Thomas Merritt, Arnaud Joly, Ammar Abbas, Penny Karanasou, Thomas Drugman, Amazon, United Kingdom
SessionSPE-33: Speech Synthesis 5: Prosody & Style
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-SYNT] Speech Synthesis and Generation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Prosody is an integral part of communication, but remains an open problem in state-of-the-art speech synthesis. There are two major issues faced when modelling prosody: (1) prosody varies at a slower rate compared with other content in the acoustic signal (e.g. segmental information and background noise); (2) determining appropriate prosody without sufficient context is an ill-posed problem. In this paper, we propose solutions to both these issues. To mitigate the challenge of modelling a slow-varying signal, we learn to disentangle prosodic information using a word level representation. To alleviate the ill-posed nature of prosody modelling, we use syntactic and semantic information derived from text to learn a context-dependent prior over our prosodic space. Our context-aware model of prosody (CAMP) outperforms the state-of-the-art technique, closing the gap with natural speech by 26%. We also find that replacing attention with a jointly-trained duration model improves prosody significantly.