2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-24.1
Paper Title A NOVEL END-TO-END SPEECH EMOTION RECOGNITION NETWORK WITH STACKED TRANSFORMER LAYERS
Authors Xianfeng Wang, Min Wang, Wenbo Qi, Wanqi Su, Xiangqian Wang, Huan Zhou, Artificial Intelligence Application Research Center, Huawei Technologies, China
SessionSPE-24: Speech Emotion 2: Neural Networks for Speech Emotion Recognition
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Speech Processing: [SPE-ANLS] Speech Analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Speech emotion recognition (SER) aims to automatically recognize emotional category for a given speech utterance. The performance of a SER system heavily relies on the effectiveness of global representation expressed at utterance level. To effectively extract such a global feature, the mainstream of recent SER architectures adopts a pipeline with two key modules, feature extraction and aggregation. Although variant module designs have brought impressive progresses, SER is still a challenging task. In contrast with those previous works, herein we propose a novel strategy for global SER feature extraction by applying an additional enhancement module on top of the current SER pipeline. To verify its effect, an end-to-end SER architecture is proposed where stacked multiple transformer layers are explored to enhance the aggregated global feature. Such an architecture is evaluated on IEMOCAP and results strongly substantiate the effectiveness of our proposal. In terms of weighted accuracy on four emotion categories, our proposed SER system outperforms the prior arts by a large margin of relatively 20% improvement. Our codes and the pre-trained SER models are made publicly available.