2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIFS-3.4
Paper Title Class-Conditional Defense GAN Against End-to-End Speech Attacks
Authors Mohammad Esmaeilpour, Patrick Cardinal, Alessandro Lameiras Koerich, École de Technologie Supérieure, Canada
SessionIFS-3: Forensics and Biometrics
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Information Forensics and Security: [MMF] Multimedia Forensics
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper we propose a novel defense approach against end-to-end adversarial attacks developed to fool advanced speech-to-text systems such as DeepSpeech and Lingvo. Unlike conventional defense approaches, the proposed approach does not directly employ low-level transformations such as autoencoding a given input signal aiming at removing potential adversarial perturbation. Instead of that, we find an optimal input vector for a class conditional generative adversarial network through minimizing the relative chordal distance adjustment between a given test input and the generator network. Then, we reconstruct the 1D signal from the synthesized spectrogram and the original phase information derived from the given input signal. Hence, this reconstruction does not add any extra noise to the signal and according to our experimental results, our defense-GAN considerably outperforms conventional defense algorithms both in terms of word error rate and sentence level recognition accuracy.