2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-46.5
Paper Title Improving the Harmony of the Composite Image by Spatial-Separated Attention Module
Authors Xiaodong Cun, Chi-Man Pun, University of Macau, Macau SAR China
SessionMLSP-46: Theory and Applications
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DEEP] Deep learning techniques
Abstract Image composition is one of the most important applications in image processing. In this work, we start from an empirical observation: the differences can only be found in the spliced region between the spliced image and the harmonized result while they share the same semantic information and the appearance in the non-spliced region. Thus, in order to learn the feature map in the masked region and the others individually, we propose a novel attention module named Spatial-Separated Attention Module (S 2 AM). Furthermore, we design a novel image harmonization framework by inserting the S 2 AM in the coarser low-level features of the Unet structure by two different ways. Besides image harmonization, we make a big step for harmonizing the composite image without the specific mask under previous observation. The experiments show that the proposed S 2 AM performs better than other state-of-the-art attention modules in our task. Moreover, we demonstrate the advantages of our model against other state-of-the-art image harmonization methods via criteria from multiple points of view.