Paper ID | SPE-35.6 | ||
Paper Title | MONAURAL SPEECH ENHANCEMENT WITH COMPLEX CONVOLUTIONAL BLOCK ATTENTION MODULE AND JOINT TIME FREQUENCY LOSSES | ||
Authors | Shengkui Zhao, Trung Hieu Nguyen, Bin Ma, Speech Lab, Alibaba Group, Singapore | ||
Session | SPE-35: Speech Enhancement 5: DNS Challenge Task | ||
Location | Gather.Town | ||
Session Time: | Thursday, 10 June, 14:00 - 14:45 | ||
Presentation Time: | Thursday, 10 June, 14:00 - 14:45 | ||
Presentation | Poster | ||
Topic | Speech Processing: [SPE-ENHA] Speech Enhancement and Separation | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | Deep complex U-Net structure and convolutional recurrent network (CRN) structure achieve state-of-the-art performance for monaural speech enhancement. Both deep complex U-Net and CRN are encoder and decoder structures with skip connections, which heavily rely on the representation power of the complex-valued convolutional layers. In this paper, we propose a complex convolutional block attention module (CCBAM) to boost the representation power of the complex-valued convolutional layers by constructing more informative features. The CCBAM is a lightweight and general module which can be easily integrated into any complex-valued convolutional layers. We integrate CCBAM with the deep complex U-Net and CRN to enhance their performance for speech enhancement. We further propose a mixed loss function to jointly optimize the complex models in both time-frequency (TF) domain and time domain. By integrating CCBAM and the mixed loss, we form a new end-to-end (E2E) complex speech enhancement framework. Ablation experiments and objective evaluations show the superior performance of the proposed approaches. |