2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-19.5
Paper Title ONLINE SPECTROGRAM INVERSION FOR LOW-LATENCY AUDIO SOURCE SEPARATION
Authors Paul Magron, IRIT, Université de Toulouse, CNRS, France; Tuomas Virtanen, Audio Research Group, Tampere University, Finland
SessionAUD-19: Audio and Speech Source Separation 6: Topics in Source Separation
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SEP] Audio and Speech Source Separation
Abstract Audio source separation is usually achieved by estimating the short-time Fourier transform (STFT) magnitude of each source, and then applying a spectrogram inversion algorithm to retrieve time-domain signals. In particular, the multiple input spectrogram inversion (MISI) algorithm has been exploited successfully in several recent works. However, this algorithm suffers from two drawbacks, which we address in this letter. First, it has originally been introduced in a heuristic fashion: we propose here a rigorous optimization framework in which MISI is derived, thus proving the convergence of this algorithm. Besides, while MISI operates offline, we propose here an online version of MISI called oMISI, which is suitable for low-latency source separation, an important requirement for e.g., hearing aids applications. oMISI also allows one to use alternative phase initialization schemes exploiting the temporal structure of audio signals. Experiments conducted on a speech separation task show that oMISI performs as well as its offline counterpart, thus demonstrating its potential for real-time source separation.