2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSAM-4.4
Paper Title ANTENNA SELECTION FOR MASSIVE MIMO SYSTEMS BASED ON POMDP FRAMEWORK
Authors Sara Sharifi, Shahram ShahbazPanahi, Min Dong, Ontario Tech University, Canada
SessionSAM-4: MIMO and Massive MIMO Array Processing
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Sensor Array and Multichannel Signal Processing: [SAM-LRNM] Learning models and methods for multi-sensor systems
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We use a partially observable Markov decision process (POMDP) framework to formulate the problem of antenna selection for a base station, equipped with a large-scale antenna array and a smaller number of RF chains. Assuming that the fading channel evolves according to a finite-state Markov chain and that only partial channel state information (CSI) from the limited selected antennas is available at each time slot, we rely on a POMDP framework for antenna selection to maximize the long-term expected downlink data rate. To avoid the computational complexity associated with the value iteration algorithm, we herein propose to use the simple myopic antenna selection policy based on the fact that for any arbitrary number of antennas and RF chains, under the assumption of positively correlated two-state Markov channel model, the myopic policy is optimal. To apply the optimal myopic policy-based antenna selection for general fading channels, we propose to quantize the channels into two values only for the purpose of antenna selection. Interestingly, our results show that the performance of the myopic antenna selection policy is close to that of the policy which relies on un-quantized full CSI.