2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-8.5
Paper Title FOVEAL AVASCULAR ZONE SEGMENTATION OF OCTA IMAGES USING DEEP LEARNING APPROACH WITH UNSUPERVISED VESSEL SEGMENTATION
Authors Zhijin Liang, Junkang Zhang, Cheolhong An, University of California, San Diego, United States
SessionBIO-8: Biological Image Analysis
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO-MIA] Medical image analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Foveal Avascular Zone (FAZ) is a crucial indicator for retinal disease detection and accurate automatic FAZ segmentation has a significant impact in clinical applications. Apart from the binary FAZ segmentation map, a vessel segmentation map can provide further information. To simultaneously implement vessel and accurate FAZ segmentation, an end-to-end trained network is proposed to achieve unsupervised vessel segmentation and supervised FAZ segmentation. Due to the lack of vessel labels, the style transfer with consistency loss is proposed to the vessel segmentation. Then FAZ segmentation is achieved with a U-Net structure based on vessel segmentation. Two superficial layer OCTA image datasets - OCTAGON3 [1] and sFAZDATA datasets [2] - are used to evaluate the proposed method. We achieve the Dice scores of 0.9263 and 0.9784, which are better than those from other approaches.