2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-3.7
Paper Title CYCLE GENERATIVE ADVERSARIAL NETWORK APPROACHES TO PRODUCE NOVEL PORTABLE CHEST X-RAYS IMAGES FOR COVID-19 DIAGNOSIS
Authors Daniel I. Morís, Joaquim de Moura, Jorge Novo, Marcos Ortega, University of A Coruña, Spain
SessionBIO-3: Machine Learning for COVID-19 diagnosis
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO-MIA] Medical image analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Coronavirus Disease 2019 (COVID-19), declared a global pandemic by the World Health Organization, mainly affects the pulmonary tissues, playing chest X-ray images an important role for its screening and early detection. In this context, portable X-ray devices are widely used, representing an alternative to fixed devices in order to reduce risks of cross-contamination. However, they provide lower quality and detailed images in terms of spatial resolution and contrast. In this work, given the low availability of images of this recent disease, we present new approaches to artificially increase the dimensionality of portable chest X-ray datasets for COVID-19 diagnosis. Hence, we combined 3 complementary CycleGAN architectures to perform a simultaneous oversampling using an unsupervised strategy and without the necessity of paired data. Despite the poor quality of the portable X-ray images, we provide an overall accuracy of 92.50% in a COVID-19 screening context, proving their suitability for COVID-19 diagnostic tasks.