2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-24.1
Paper Title Towards efficient models for real-time deep noise suppression
Authors Sebastian Braun, Hannes Gamper, Chandan K. A. Reddy, Ivan Tashev, Microsoft, United States
SessionAUD-24: Signal Enhancement and Restoration 1: Deep Learning
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SEN] Signal Enhancement and Restoration
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract With recent research advancements, deep learning models are becoming attractive and powerful choices for speech enhancement in real-time applications. While state-of-the-art models can achieve outstanding results in terms of speech quality and background noise reduction, the main challenge is to obtain compact enough models, which are resource efficient during inference time. An important but often neglected aspect for data-driven methods is that results can be only convincing when tested on real-world data and evaluated with useful metrics. In this work, we investigate reasonably small recurrent and convolutional-recurrent network architectures for speech enhancement, trained on a large dataset considering also reverberation. We show interesting tradeoffs between computational complexity and the achievable speech quality, measured on real recordings using a highly accurate MOS estimator. It is shown that the achievable speech quality is a function of network complexity, and show which models have better tradeoffs.