2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-9.6
Paper Title Domain Adaptation for Learning Generator from Paired Few-Shot Data
Authors Chun-Chih Teng, National Chiao Tung University, Taiwan; Pin-Yu Chen, IBM Research, United States; Wei-Chen Chiu, National Chiao Tung University, Taiwan
SessionIVMSP-9: Zero and Few Short Learning
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We propose a Paired Few-shot GAN (PFS-GAN) model for learning generators with sufficient source data and a few target data. While generative model learning typically needs large-scale training data, our PFS-GAN not only uses the concept of few-shot learning but also domain shift to transfer the knowledge across domains, which alleviates the issue of obtaining low-quality generator when only trained with target domain data. The cross-domain datasets are assumed to have two properties: (1) each target-domain sample has its source domain correspondence and (2) two domains share similar content information but different appearance. Our PFS-GAN aims to learn the disentangled representation from images, which composed of domain-invariant content features and domain-specific appearance features. Furthermore, a relation loss is introduced on the content features while shifting the appearance features to increase the structural diversity. Extensive experiments show that our method has better quantitative and qualitative results on the generated target-domain data with higher diversity in comparison to several baselines.