2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-13.3
Paper Title ON THE RELATIONSHIP BETWEEN SPEECH-BASED BREATHING SIGNAL PREDICTION EVALUATION MEASURES AND BREATHING PARAMETERS ESTIMATION
Authors Zohreh Mostaani, Idiap Research Institute, Switzerland; Venkata Srikanth Nallanthighal, Aki Harma, Philips Research, Netherlands; Helmer Strik, Radboud University Nijmegen, Netherlands; Mathew Magimai-Doss, Idiap Research Institute, Switzerland
SessionBIO-13: Deep Learning for Biomedical Applications
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO] Biomedical signal processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The respiratory system is one of the major components of the speech production system. Any alteration in breathing can result in changes in speech. Specific breathing characteristics, such as breathing rate and tidal volume, can indicate a person's pathological condition. More recently, neural network-based methods have started emerging for predicting the breathing signal from the speech signal. The neural networks are trained and evaluated with different objective measures, such as mean squared error (MSE) and Pearson's correlation. This paper investigates whether there is a systematic relationship between the different objective measures used for training and evaluating the neural network models and the end-goal, i.e. estimation of breathing parameters such as, breathing rate and tidal volume. Our investigations on two different data sets with two different neural network-based approaches show that there is no clear systematic relationship. In other words, obtaining a high Pearson's correlation on the evaluation set does not necessarily mean better breathing parameter estimation. Thus, indicating the need for developing other objective evaluation measures.