2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIFS-7.1
Paper Title BAITRADAR: A MULTI-MODEL CLICKBAIT DETECTION ALGORITHM USING DEEP LEARNING
Authors Bhanuka Gamage, Adnan Labib, Aisha Joomun, Chern Hong Lim, KokSheik Wong, Monash University Malaysia, Malaysia
SessionIFS-7: Information Hiding, Cryptography and Cybersecurity
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Information Forensics and Security: [CYB] Cybersecurity
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Following the rising popularity of YouTube, there is an emerging problem on this platform called clickbait, which provokes users to click on videos using attractive titles and thumbnails. As a result, users ended up watching a video that does not have the content as publicized in the title. This issue is addressed in this study by proposing an algorithm called BaitRadar, which uses a deep learning technique where six inference models are jointly consulted to make the final classification decision. These models focus on different attributes of the video, including title, comments, thumbnail, tags, video statistics and audio transcript. The final classification is attained by computing the average of multiple models to provide a robust and accurate output even in situation where there is missing data. The proposed method is tested on 1,400 YouTube videos. On average, a test accuracy of 98% is achieved with an inference time of ≤ 2s.