2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDASPS-6.3
Paper Title DISCRETE COSINE TRANSFORM BASED CAUSAL CONVOLUTIONAL NEURAL NETWORK FOR DRIFT COMPENSATION IN CHEMICAL SENSORS
Authors Diaa Badawi, University of Illinois at Chicago, United States; Agamyrat Agambayev, Sule Ozev, Arizona State University, United States; Ahmet Enis Cetin, University of Illinois at Chicago, United States
SessionASPS-6: Sensing & Sensor Processing
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Applied Signal Processing Systems: Signal Processing Systems [DIS-EMSA]
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Sensor drift is a major problem in chemical sensors that requires addressing for reliable and accurate detection of chemical analytes. In this paper, we develop a causal convolutional neural network (CNN) with a Discrete Cosine Transform (DCT) layer to estimate the drift signal. In the DCT module, we apply soft-thresholding nonlinearity in the transform domain to denoise the data and obtain a sparse representation of the drift signal. The soft-threshold values are learned during training. Our results show that DCT layer-based CNNs are able to produce a slowly varying baseline drift signal. We train the CNN on synthetic data and test it on real chemical sensor data. Our results show that we can have an accurate and smooth drift estimate even when the observed sensor signal is very noisy.