2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-21.2
Paper Title Relaxed Wasserstein with Applications to GANs
Authors Xin Guo, Johnny Hong, Tianyi Lin, Nan Yang, University of California, Berkeley, United States
SessionMLSP-21: Generative Neural Networks
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Wasserstein Generative Adversarial Networks (WGANs) provide a versatile class of models, which have attracted great attention in various applications. However, this framework has two main drawbacks: (i) Wasserstein-1 (or Earth-Mover) distance is restrictive such that WGANs cannot always fit data geometry well; (ii) It is difficult to achieve fast training of WGANs. In this paper, we propose a new class of \textit{Relaxed Wasserstein} (RW) distances by generalizing Wasserstein-1 distance with Bregman cost functions. We show that RW distances achieve nice statistical properties while not sacrificing the computational tractability. Combined with the GANs framework, we develop Relaxed WGANs (RWGANs) which are not only statistically flexible but can be approximated efficiently using heuristic approaches. Experiments on real images demonstrate that the RWGAN with Kullback-Leibler (KL) cost function outperforms other competing approaches, e.g., WGANs, even with gradient penalty.