2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDASPS-4.4
Paper Title IDENTIFICATION OF DEEP BREATH WHILE MOVING FORWARD BASED ON MULTIPLE BODY REGIONS AND GRAPH SIGNAL ANALYSIS
Authors Yunlu Wang, East China Normal University, China; Cheng Yang, Key Laboratory of Artificial Intelligence, Ministry of Education, China; Menghan Hu, Jian Zhang, Qingli Li, East China Normal University, China; Guangtao Zhai, Key Laboratory of Artificial Intelligence, Ministry of Education, China; Xiao-Ping Zhang, Ryerson University, Canada
SessionASPS-4: Autonomous Systems
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Applied Signal Processing Systems: Emerging Topics [OTH-EMRG]
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract This paper presents an unobtrusive solution that can automatically identify deep breath when a person is walking past the global depth camera. Existing non-contact breath assessments achieve satisfactory results under restricted conditions when human body stays relatively still. When someone moves forward, the breath signals detected by depth camera are hidden within signals of trunk displacement and deformation, and the signal length is short due to the short stay time, posing great challenges for us to establish models. To overcome these challenges, multiple region of interests (ROIs) based signal extraction and selection method is proposed to automatically obtain the signal informative to breath from depth video. Subsequently, graph signal analysis (GSA) is adopted as a spatial-temporal filter to wipe the components unrelated to breath. Finally, a classifier for identifying deep breath is established based on the selected breath-informative signal. In validation experiments, the proposed approach outperforms the comparative methods with the accuracy, precision, recall and F1 of 75.5%, 76.2%, 75.0% and 75.2%, respectively. This system can be extended to public places to provide timely and ubiquitous help for those who may have or are going through physical or mental trouble.