2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSAM-11.1
Paper Title ENHANCED BLIND CALIBRATION OF UNIFORM LINEAR ARRAYS WITH ONE-BIT QUANTIZATION BY KULLBACK-LEIBLER DIVERGENCE COVARIANCE FITTING
Authors Amir Weiss, Weizmann Institute of Science, Israel; Arie Yeredor, Tel-Aviv University, Israel
SessionSAM-11: Array Calibration and Performance Analysis
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Sensor Array and Multichannel Signal Processing: [SAM-CALB] Array calibration
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract One-bit quantization has recently become an attractive option for data acquisition in cutting edge applications, due to the increasing demand for low power and higher sampling rates. Subsequently, the rejuvenated one-bit array processing field is now receiving more attention, as "classical" array processing techniques are adapted / modified accordingly. However, array calibration, often an instrumental preliminary stage in array processing, has so far received little attention in its one-bit form. In this paper, we present a novel solution approach for the blind calibration problem, namely, without using known calibration signals. In order to extract information within the second-order statistics of the quantized measurements, we propose to estimate the unknown sensors' gains and phases offsets according to a Kullback-Leibler Divergence (KLD) covariance fitting criterion. We then provide a quasi-Newton solution algorithm, with a consistent initial estimate, and demonstrate the improved accuracy of our KLD-based estimates in simulations.