2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-17.1
Paper Title WHAT AND WHERE TO FOCUS IN PERSON SEARCH
Authors Tong Zhou, Kun Tian, University of Chinese Academy of Sciences, China
SessionIVMSP-17: Looking at People
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVSMR] Image & Video Sensing, Modeling, and Representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Person search aims to locate and identify the query person from a gallery of original scene images. Almost all previous methods only consider single high-level semantic information, ignoring that the essence of identification task is to learn rich and expressive features. Additionally, large pose variations and occlusions of the target person significantly increase the difficulty of search task. For these two findings, we first propose multilevel semantic aggregation algorithm for more discriminative feature descriptors. Then, a pose-assisted attention module is designed to highlight fine-grained area of the target and simultaneously capture valuable clues for identification. Extensive experiments confirm that our framework can coordinate multilevel semantics of persons and effectively alleviate the adverse effects of occlusion and various pose. We also achieve state-of-the-art performance on two challenging datasets CUHK-SYSU and PRW.