2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-35.1
Paper Title ICASSP 2021 DEEP NOISE SUPPRESSION CHALLENGE
Authors Chandan Karadagur Ananda Reddy, Harishchandra Dubey, Vishak Gopal, Ross Cutler, Sebastian Braun, Hannes Gamper, Robert Aichner, Sriram Srinivasan, Microsoft, United States
SessionSPE-35: Speech Enhancement 5: DNS Challenge Task
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-ENHA] Speech Enhancement and Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The Deep Noise Suppression (DNS) challenge is designed to foster innovation in the area of noise suppression to achieve superior perceptual speech quality. We recently organized a DNS challenge special session at INTERSPEECH 2020. We open-sourced training and test datasets for researchers to train their noise suppression models. We also open-sourced a subjective evaluation framework and used the tool to evaluate and pick the final winners. Many researchers from academia and industry made significant contributions to push the field forward. We also learned that as a research community, we still have a long way to go in achieving excellent speech quality in challenging noisy real-time conditions. In this challenge, we are expanding both our training and test datasets. Clean speech in the training set has increased by 200% with the addition of singing voice, emotion data, and non-English languages. The test set has increased by 100% with the addition of singing, emotional, nonEnglish (tonal and non-tonal) languages, and, personalized DNS test clips. There are two tracks with a focus on (i) real-time denoising, and (ii) real-time personalized DNS.