2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-10.5
Paper Title Context-Aware Speech Stress Detection in Hospital Workers Using Bi-LSTM Classifiers
Authors Amr Gaballah, Abhishek Tiwari, Institut national de la recherche scientifique, Canada; Shrikanth Narayanan, University of Southern California, United States; Tiago Falk, Institut national de la recherche scientifique, Canada
SessionSS-10: Computer Audition for Healthcare (CA4H)
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Special Sessions: Computer Audition for Healthcare (CA4H)
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Hospital workers are known to work long hours in a highly stressful environment. The COVID-19 pandemic has increased this burden multi-fold. Pre-COVID statistics already showed that one in every three nurses reported burnout, thus affecting patient satisfaction and the quality of their provided service. Real-time monitoring of burnout, and other underlying factors, such as stress, could provide feedback not only to the clinical staff, but also to hospital administrators, thus allowing for supportive measures to be taken early. In this paper, we present a context-aware speech-based system for stress detection. We consider data from 144 hospital workers who were monitored during their daily shifts over a 10-week period; subjective stress readings were collected daily. Wearable devices measured speech features and physiological readings, such as heart rate. Environment sensors, in turn, were used to track staff movement within the hospital. Here, we show the importance of context-awareness for stress level detection based on a bidirectional LSTM deep neural network. In particular, we show the importance of hospital location and circadian rhythm based contextual cues for stress prediction. Overall, we show improvements as high as 14\% in F1 scores once context is incorporated, relative to using the speech features alone.