2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-9.6
Paper Title Resolution Limits of 20 Questions Search Strategies for Moving Targets
Authors Lin Zhou, Beihang University, China; Alfred Hero, University of Michigan, Ann Arbor, United States
SessionSPTM-9: Estimation, Detection and Learning over Networks 3
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing Theory and Methods: Signal Processing over Networks
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We establish fundamental limits of tracking a moving target over the unit cube under the framework of 20 questions with measurement-dependent noise. In this problem, there is an oracle who knows the instantaneous location of a target. Our task is to query the oracle as few times as possible to accurately estimate the trajectory of the moving target, whose initial location and velocity is \emph{unknown}. We study the case where the oracle's answer to each query is corrupted by random noise with query-dependent discrete distribution. In our formulation, the performance criterion is the resolution, which is defined as the maximal absolute value between the true location and estimated location at each discrete time during the searching process. We are interested in the minimal resolution of any non-adaptive searching procedure with a finite number of queries and derive approximations to this optimal resolution via the second-order asymptotic analysis.