2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-16.4
Paper Title Graph learning under spectral sparsity constraints
Authors Subbareddy Batreddy, Indian Institute of Technology, Hyderabad and Swinburne university of technology, Australia; Aditya Siripuram, Indian Institute of Technology, Hyderabad, India; Jingxin Zhang, Swinburne University of Technology, Australia
SessionSPTM-16: Graph Topology Inference
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SIPG] Signal and Information Processing over Graphs
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Graph inference plays an essential role in machine learning, pattern recognition, and classification. Signal processing based approaches in literature generally assume some variational property of the observed data on the graph. We make a case for inferring graphs on which the observed data has high variation. We propose a new signal processing based inference model and a new learning criterion that allow for wideband frequency variation in the data and derive an algorithm for graph inference. The proposed inference algorithm consists of two steps: 1) learning orthogonal eigenvectors of a graph from the data; 2) recovering the adjacency matrix of the graph topology from the given graph eigenvectors. The first step is solved by an iterative algorithm with a closed-form solution. In the second step, the adjacency matrix is inferred from the eigenvectors by solving a convex optimization problem. Numerical results on synthetic data show the proposed inference algorithm can effectively capture the meaningful graph topology from observed data under the wideband assumption