Paper ID | MLSP-14.4 | ||
Paper Title | Assisted Learning: Cooperative AI with Autonomy | ||
Authors | Jiaying Zhou, Xun Xian, University of Minnesota, United States; Na Li, Harvard University, United States; Jie Ding, University of Minnesota, United States | ||
Session | MLSP-14: Learning Algorithms 1 | ||
Location | Gather.Town | ||
Session Time: | Wednesday, 09 June, 13:00 - 13:45 | ||
Presentation Time: | Wednesday, 09 June, 13:00 - 13:45 | ||
Presentation | Poster | ||
Topic | Machine Learning for Signal Processing: [MLR-LEAR] Learning theory and algorithms | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | The rapid development in data collecting devices and computation platforms produces an emerging number of agents, each equipped with a unique data modality over a particular population of subjects. While an agent’s predictive performance may be enhanced by transmitting others’ data to it, this is often unrealistic due to intractable transmission costs and security concerns. In this paper, we propose a method named ASCII for an agent to improve its classification performance through assistance from other agents, without sharing proprietary data and model information. The main idea is to iteratively interchange an ignorance value between 0 and 1 for each collated sample among agents, where the value represents the urgency of further assistance needed. The method is naturally suitable for privacy-aware, transmission-economical, and decentralized learning scenarios. The method is also general as it allows the agents to use arbitrary classifiers such as logistic regression, ensemble tree, and neural network, and they may be heterogeneous among agents. We demonstrate the proposed method with extensive experimental studies. |