2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-8.1
Paper Title LEARNING BINARY SEMANTIC EMBEDDING FOR BREAST HISTOLOGY IMAGE CLASSIFICATION AND RETRIEVAL
Authors Xiao Kang, Xingbo Liu, Shandong University, China; Xiushan Nie, Shandong Jianzhu University, China; Yilong Yin, Shandong University, China
SessionBIO-8: Biological Image Analysis
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO-BIA] Biological image analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract With the development of medical imaging technology and machine learning, the computer-assisted diagnosis has attracted extensive research attention, which can provide beneficial reference to pathologists. However, the exponential growth of medical images and uninterpretability of traditional classification models have hindered the applications of the computer-assisted diagnosis. To address this issues, we propose a novel method for Learning Binary Semantic Embedding (LBSE). Based on this efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images. Furthermore, double supervision, bit uncorrelation and balance constraint, asymmetric strategy and discrete optimization are seamlessly integrated in the proposed method for learning binary embedding. Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.