2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDHLT-11.4
Paper Title HANDLING CLASS IMBALANCE IN LOW-RESOURCE DIALOGUE SYSTEMS BY COMBINING FEW-SHOT CLASSIFICATION AND INTERPOLATION
Authors Vishal Sunder, Eric Fosler-Lussier, The Ohio State University, United States
SessionHLT-11: Language Understanding 3: Speech Understanding - General Topics
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Human Language Technology: [HLT-DIAL] Discourse and Dialog
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Utterance classification performance in low-resource dialogue systems is constrained by an inevitably high degree of data imbalance in class labels. We present a new end-to-end pairwise learning framework that is designed specifically to tackle this phenomenon by inducing a few-shot classification capability in the utterance representations and augmenting data through an interpolation of utterance representations. Our approach is a general purpose training methodology, agnostic to the neural architecture used for encoding utterances. We show significant improvements in macro-F1 score over standard cross-entropy training for three different neural architectures, demonstrating improvements on a Virtual Patient dialogue dataset as well as a low-resourced emulation of the Switchboard dialogue act classification dataset.