2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-23.1
Paper Title A CURATED DATASET OF URBAN SCENES FOR AUDIO-VISUAL SCENE ANALYSIS
Authors Shanshan Wang, Annamaria Mesaros, Toni Heittola, Tuomas Virtanen, Tampere University, Finland
SessionAUD-23: Detection and Classification of Acoustic Scenes and Events 4: Datasets and metrics
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-CLAS] Detection and Classification of Acoustic Scenes and Events
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract This paper introduces a curated dataset of urban scenes for audio-visual scene analysis which consists of carefully selected and recorded material. The data was recorded in multiple European cities, using the same equipment, in multiple locations for each scene, and is openly available. We also present a case study for audio-visual scene recognition and show that joint modeling of audio and visual modalities brings significant performance gain compared to state of the art uni-modal systems. Our approach obtained an 84.8% accuracy compared to 75.8% for the audio-only and 68.4% for the video-only equivalent systems.