2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-36.1
Paper Title AUDIO-VISUAL SPEECH INPAINTING WITH DEEP LEARNING
Authors Giovanni Morrone, University of Modena and Reggio Emilia, Italy; Daniel Michelsanti, Zheng-Hua Tan, Jesper Jensen, Aalborg University, Denmark
SessionSPE-36: Speech Enhancement 6: Multi-modal Processing
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-ENHA] Speech Enhancement and Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we present a deep-learning-based framework for audio-visual speech inpainting, i.e., the task of restoring the missing parts of an acoustic speech signal from reliable audio context and uncorrupted visual information. Recent work focuses solely on audio-only methods and generally aims at inpainting music signals, which show highly different structure than speech. Instead, we inpaint speech signals with gaps ranging from 100 ms to 1600 ms to investigate the contribution that vision can provide for gaps of different duration. We also experiment with a multi-task learning approach where a phone recognition task is learned together with speech inpainting. Results show that the performance of audio-only speech inpainting approaches degrades rapidly when gaps get large, while the proposed audio-visual approach is able to plausibly restore missing information. In addition, we show that multi-task learning is effective, although the largest contribution to performance comes from vision.