2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-30.2
Paper Title IMRNET: AN ITERATIVE MOTION COMPENSATION AND RESIDUAL RECONSTRUCTION NETWORK FOR VIDEO COMPRESSED SENSING
Authors Xin Yang, Chunling Yang, South China University of Technology, China
SessionIVMSP-30: Inverse Problems in Image & Video Processing
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVTEC] Image & Video Processing Techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The traditional video compressed sensing (VCS) algorithms have elegant theoretical interpretability. However, the deterministic sparse transformation used in these algorithms usually can not satisfy the sparsity need, which results in poor reconstruction quality. Also, the optimization process is slow. Deep learning can learn data-driven transformation while achieving fast reconstruction. This paper proposes an iterative motion compensation and residual reconstruction network for VCS, called ImrNet. ImrNet follows the iterative optimization method of MC-BCS-SPL framework, and each module in ImrNet is trained independently. In addition, we design a motion-compensated network (MCNet) to achieving adaptive fusion among frames by using the image semantic segmentation method to obtain the probability map as fusion weights of each frame. The proposed MCNet is used to generate fusion-compensated frame in each iteration of ImrNet. Experimental results show that ImrNet can achieve good reconstruction results with only two iterations. Its reconstruction quality is better than state-of-the-art VCS methods.