2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-52.5
Paper Title A Time-domain Convolutional Recurrent Network for Packet Loss Concealment
Authors Ju Lin, Clemson University, United States; Yun Wang, Kaustubh Kalgaonkar, Gil Keren, Didi Zhang, Christian Fuegen, Facebook AI, United States
SessionSPE-52: Speech Enhancement 8: Echo Cancellation and Other Tasks
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-ENHA] Speech Enhancement and Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Packet loss may affect a wide range of applications that use voice over IP (VoIP), e.g. video conferencing. In this paper, we investigate a time-domain convolutional recurrent network (CRN) for online packet loss concealment. CRN comprises a convolutional encoder-decoder structure and long short-term memory (LSTM) layers, which have been shown to be suitable for real-time speech enhancement applications. Moreover, we propose lookahead and masked training to further improve the performance of the CRN framework. Experimental results show that the proposed system outperforms a baseline system using only LSTM layers in terms of two objective metrics -- perceptual evaluation of speech quality (PESQ) and short-term objective intelligibility (STOI); it also reduces the word error rate (WER) more than the baseline when used as a frontend for speech recognition. The advantage of the proposed system is also verified in a subjective evaluation by the mean opinion score (MOS).