2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-13.2
Paper Title HIERARCHICAL POSE CLASSIFICATION FOR INFANT ACTION ANALYSIS AND MENTAL DEVELOPMENT ASSESSMENT
Authors Zhongyu Jiang, Jianxiong Zhou, University of Washington, United States; Jang-Hee Yoo, Electronics and Telecommunications Research Institute (ETRI), South Korea; Jenq-Neng Hwang, University of Washington, United States
SessionBIO-13: Deep Learning for Biomedical Applications
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO-MIA] Medical image analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Based on Alberta Infant Motor Scale (AIMS), a questionnaire that tracks an infant's motor function, an infant's mental development can be evaluated by recording poses a baby can achieve. Therefore, it is meaningful to propose a systematic image-based pose classifier to classify infant actions based on AIMS to provide early diagnosis of a potential developmental disorder such as Autism. This paper presents a hierarchical pose classifier, given a baby image frame that combines the benefits of 3D human pose estimation and scene context information. Due to privacy policies, we cannot collect enough real infant images/videos for experiments. Instead, we generate synthetic baby images with the help of the Skinned Multi-Infant Linear (SMIL) model. Images are first fed into a ResNet-50 for coarse-level pose classification. A stacked hourglass CNN and a hierarchical 3D pose estimation scheme are used for 2D/3D pose estimation. Finally, an innovative Hierarchical Infant Pose Classifier (HIPC) takes the estimated 3D keypoints and coarse-level pose classification confidence scores to give the fine-level baby pose classification results. Our experimental results show that our hierarchical pose classifier achieves accurate and stable performance on infant pose recognition.