2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-21.5
Paper Title LATTICE-FREE MMI ADAPTATION OF SELF-SUPERVISED PRETRAINED ACOUSTIC MODELS
Authors Apoorv Vyas, Idiap Research Institute and EPFL, Switzerland; Srikanth Madikeri, Hervé Bourlard, Idiap Research Institute, Switzerland
SessionSPE-21: Speech Recognition 7: Training Methods for End-to-End Modeling
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Speech Processing: [SPE-LVCR] Large Vocabulary Continuous Recognition/Search
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this work, we propose lattice-free MMI (LFMMI) for supervised adaptation of self-supervised pretrained acoustic model. We pretrain a Transformer model on thousand hours of untranscribed Librispeech data followed by supervised adaptation with LFMMI on three different datasets. Our results show that fine-tuning with LFMMI, we consistently obtain relative WER improvements of 10% and 35.3% on the clean and other test sets of Librispeech (100h), 10.8% on Switchboard (300h), and 4.3% on Swahili (38h) and 4.4% on Tagalog (84h) compared to the baseline trained only with supervised data.