2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-5.3
Paper Title SPARSE TIME-FREQUENCY REPRESENTATION VIA ATOMIC NORM MINIMIZATION
Authors Tsubasa Kusano, Kohei Yatabe, Yasuhiro Oikawa, Waseda University, Japan
SessionSPTM-5: Sampling, Multirate Signal Processing and Digital Signal Processing 1
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Signal Processing Theory and Methods: [SMDSP] Sampling, Multirate Signal Processing and Digital Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Nonstationary signals are commonly analyzed and processed in the time-frequency (T-F) domain that is obtained by the discrete Gabor transform (DGT). The T-F representation obtained by DGT is spread due to windowing, which may degrade the performance of T-F domain analysis and processing. To obtain a well-localized T-F representation, sparsity-aware methods using $\ell_1$-norm have been studied. However, they need to discretize a continuous parameter onto a grid, which causes a model mismatch. In this paper, we propose a method of estimating a sparse T-F representation using atomic norm. The atomic norm enables sparse optimization without discretization of continuous parameters. Numerical experiments show that the T-F representation obtained by the proposed method is sparser than the conventional methods.