2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-10.4
Paper Title LEARNING FROM HETEROGENEOUS EEG SIGNALS WITH DIFFERENTIABLE CHANNEL REORDERING
Authors Aaqib Saeed, Eindhoven University of Technology, Netherlands; David Grangier, Olivier Pietquin, Neil Zeghidour, Google Research, France
SessionBIO-10: Deep Learning for EEG Analysis
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO] Biomedical signal processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We propose CHARM, a method for training a single neural network across inconsistent input channels. Our work is motivated by Electroencephalography (EEG), where data collection protocols from different headsets result in varying channel ordering and number, which limits the feasibility of transferring trained systems across datasets. Our approach builds upon attention mechanisms to estimate a latent reordering matrix from each input signal and map input channels to a canonical order. CHARM is differentiable and can be composed further with architectures expecting a consistent channel ordering to build end-to-end trainable classifiers. We perform experiments on four EEG classification datasets and demonstrate the efficacy of CHARM via simulated shuffling and masking of input channels. Moreover, our method improves the transfer of pre-trained representations between datasets collected with different protocols.