2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-29.3
Paper Title BLEND-RES^2NET: BLENDED REPRESENTATION SPACE BY TRANSFORMATION OF RESIDUAL MAPPING WITH RESTRAINED LEARNING FOR TIME SERIES CLASSIFICATION
Authors Arijit Ukil, Tata Consultancy Services, India; Antonio J. Jara, HOP Ubiquitous (HOPU), Spain; Leandro Marin, University of Murcia, Spain
SessionMLSP-29: Deep Learning for Time Series
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DEEP] Deep learning techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The typical problem like insufficient training instances in time series classification task demands novel deep neural network architecture to warrant consistent and accurate performance. Deep Residual Network (ResNet) learns through H(x)=F(x)+x, where F(x) is a nonlinear function. We propose Blend-Res2Net that blends two different representation spaces: H^1 (x)=F(x)+Trans(x) and H^2 (x)=F(Trans(x))+x with the intention of learning over richer representation by capturing the temporal as well as the spectral signatures (Trans(∙) represents the transformation function). The sophistication of richer representation for better understanding of the complex structure of time series signals, may result in higher generalization loss. Hence, the deep network complexity is adapted by proposed novel restrained learning, which introduces dynamic estimation of the network depth. The efficacy of Blend-Res2Net is demonstrated by a series of ablation experiments over publicly available benchmark time series archive- UCR. We further establish the superior performance of Blend-Res2Net over baselines and state-of-the-art algorithms including 1-NN-DTW, HIVE-COTE, ResNet, InceptionTime, ROCKET, DMS-CNN, TS-Chief.