2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-46.3
Paper Title SYNTHESIZE & LEARN: JOINTLY OPTIMIZING GENERATIVE AND CLASSIFIER NETWORKS FOR IMPROVED DROWSINESS DETECTION
Authors Sandipan Banerjee, Ajjen Joshi, Ahmed Ghoneim, Survi Kyal, Affectiva, United States; Taniya Mishra, SureStart, United States
SessionMLSP-46: Theory and Applications
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Driving in a state of drowsiness is a major cause of road accidents, resulting in tremendous damage to life and property. Developing robust, automatic, real-time systems that can infer drowsiness states of drivers has the potential of making life-saving impact. However, real-world drowsy driving datasets are unbalanced, due to the sparsity of drowsy driving events. We focus on the problem of alleviating the class imbalance problem by using generative adversarial networks (GAN) to synthesize examples of sparse classes directly in the feature-space. Our GAN-based framework simultaneously generates realistic examples of sparse classes while using the generated samples to improve the performance of a separate drowsiness classifier. We validate this approach in a real-world drowsiness dataset, where we demonstrate a classifier trained using this approach outperforms a stand-alone classifier trained without any GAN-based augmentations.