2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-20.4
Paper Title DEEPTALK: VOCAL STYLE ENCODING FOR SPEAKER RECOGNITION AND SPEECH SYNTHESIS
Authors Anurag Chowdhury, Arun Ross, Prabu David, Michigan State University, United States
SessionSPE-20: Speaker Recognition 4: Applications
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Automatic speaker recognition algorithms typically characterize speech audio using short-term spectral features that encode the physiological and anatomical aspects of speech production. Such algorithms do not fully capitalize on speaker-dependent characteristics present in behavioral speech features. In this work, we propose a prosody encoding network called DeepTalk for extracting vocal style features directly from raw audio data. The DeepTalk method outperforms several state-of-the-art speaker recognition systems across multiple challenging datasets. The speaker recognition performance is further improved by combining DeepTalk with a state-of-the-art physiological speech feature-based speaker recognition system. We also integrate DeepTalk into a current state-of-the-art speech synthesizer to generate synthetic speech. A detailed analysis of the synthetic speech shows that the DeepTalk captures F0 contours essential for vocal style modeling. Furthermore, DeepTalk-based synthetic speech is shown to be almost indistinguishable from real speech in the context of speaker recognition.