2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-43.3
Paper Title TOWARDS PARKINSON’S DISEASE PROGNOSIS USING SELF-SUPERVISED LEARNING AND ANOMALY DETECTION
Authors Hongchao Jiang, Wei Yang Bryan Lim, Jer Shyuan Ng, Nanyang Technological University, Singapore; Yu Wang, Ying Chi, Alibaba Group, Singapore; Chunyan Miao, Nanyang Technological University, Singapore
SessionMLSP-43: Biomedical Applications
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Parkinson's disease (PD) is a chronic disease with a high risk of incidence after the age of 60 and is a problem for many countries facing an aging population. Current works have mainly focused on supervised learning using data collected from various sensors to differentiate between PD and healthy subjects. However, such supervised methods are not ideal for prognosis where there are no labels (i.e., we do not know in advance which subjects will develop PD in the future). We propose to tackle the problem as a semi-supervised anomaly detection task, where we model the physiological patterns of healthy subjects instead. A self-supervised learning technique first learns a good representation of the sensor signals. The representations are then adapted to capture inter-class patterns for anomaly detection. Evaluation on a large-scale PD dataset shows that our approach can learn discriminative features.