2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-43.2
Paper Title SUBJECT-INVARIANT EEG REPRESENTATION LEARNING FOR EMOTION RECOGNITION
Authors Soheil Rayatdoost, University of Geneva, Switzerland; Yufeng Yin, University of Southern California, United States; David Rudrauf, University of Geneva, Switzerland; Mohammad Soleymani, University of Southern California, United States
SessionMLSP-43: Biomedical Applications
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The discrepancies between the distributions of the train and test data, a.k.a., domain shift, result in lower generalization for emotion recognition methods. One of the main factors contributing to these discrepancies is human variability. Domain adaptation methods are developed to alleviate the problem of domain shift, however, these techniques while reducing between database variations fail to reduce between-subject variability. In this paper, we propose an adversarial deep domain adaptation approach for emotion recognition from electroencephalogram (EEG) signals. The method jointly learns a new representation that minimizes emotion recognition loss and maximizes subject confusion loss. We demonstrate that the proposed representation can improve emotion recognition performance within and across databases.