2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-12.4
Paper Title ZERO-SHOT VOICE CONVERSION WITH ADJUSTED SPEAKER EMBEDDINGS AND SIMPLE ACOUSTIC FEATURES
Authors Zhiyuan Tan, Jianguo Wei, Junhai Xu, Yuqing He, Wenhuan Lu, College of Intelligence and Computing, Tianjin University, China
SessionSPE-12: Voice Conversion 2: Low-Resource & Cross-Lingual Conversion
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Speech Processing: [SPE-SYNT] Speech Synthesis and Generation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Zero-shot voice conversion (VC) where both source and target speakers are unseen in the training dataset has become a new research direction. Using speaker embeddings instead of one-hot vectors to represent speaker identity is a key point, which makes VC models work on unseen speakers. In our work, a newly designed neural network was used to adjust the speaker embeddings of unseen speakers. This enables speaker embeddings to perform better on zero-shot VC. In addition, disentangled representation of features is the mainstream method to achieve zero-shot VC. In terms of input features of VC model, we use Mel-cepstral and F0 as simple acoustic features (SAF) rather than Mel-spectrograms. This avoids F0 conflicts in decoder that existed in the previous methods. The evaluations demonstrate that our proposed methods improve the quality of converted speech in terms of naturalness and similarity.