2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-40.6
Paper Title MULTITASK LEARNING AND JOINT OPTIMIZATION FOR TRANSFORMER-RNN-TRANSDUCER SPEECH RECOGNITION
Authors Jae-Jin Jeon, Euisung Kim, Kakaoenterprise, South Korea
SessionSPE-40: Speech Recognition 14: Acoustic Modeling 2
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Speech Processing: [SPE-ROBU] Robust Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Recently, several types of end-to-end speech recognition methods named as transformer-transducer have been introduced successfully. According to those kinds of methods, transcription networks are generally modelled by transformerbased neural networks, while prediction networks can be modelled by either of transformers or recurrent neural networks (RNN). In this paper, we propose novel multitask learning, joint optimization, and joint decoding methods for transformer-RNN-transducer systems. Main advantage of the proposed methods is that the model can maintain information on the large text corpus eliminating the necessity of an external language model (LM). We demonstrate the effectiveness of the proposed methods based on experiments utilizing the well known ESPNET toolkit on the widely used Librispeech datasets, and show that the proposed methods can reduce word error rate (WER) by 16.6 % and 13.3 % for test-clean and test-other datasets, respectively, without changing the overall model structure and without exploiting an external LM.