2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-30.5
Paper Title MULTI-MODELS FUSION FOR LIGHT FIELD ANGULAR SUPER-RESOLUTION
Authors FengYin Cao, Ping An, Xinpeng Huang, Chao Yang, Shanghai University, China; Qiang Wu, University of Technology Sydney, Australia
SessionIVMSP-30: Inverse Problems in Image & Video Processing
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVELI] Electronic Imaging
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Light field (LF) imaging has received increasing attention due to its richer interpretation of the scene. However, an inherent spatial-angular trade-off exists in LF that prevents LF from practical applications. Consequently, how to break such a trade-off has become one of the main challenges in sparsely sampled LF reconstruction. LF super-resolution (SR) can provide an opportunity to solve this issue, but most methods exploit only one form of LF, thereby leading to much loss of information. We believe that different LF forms can compensate each other to obtain higher gains via fusion strategy. In this paper, therefore, we propose a multi-models fusion for LF SR in angular domain. Cascading models which are trained by different LF forms can fully exploit rich LF information. Experimental results demonstrate that our method is effective and achieves a comparable result against state-of-the-art techniques.