2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-35.2
Paper Title ICA WITH ORTHOGONALITY CONSTRAINT: IDENTIFIABILITY AND A NEW EFFICIENT ALGORITHM
Authors Benjamin Gabrielson, Mohammad Akhonda, University of Maryland, Baltimore County, United States; Zois Boukouvalas, American University, United States; Seung Jun Kim, Tülay Adali, University of Maryland, Baltimore County, United States
SessionMLSP-35: Independent Component Analysis
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-ICA] Independent component analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Given the prevalence of independent component analysis (ICA) for signal processing, many methods for improving the convergence properties of ICA have been introduced. The most utilized methods operate by iterative rotations over pre-whitened data, whereby limiting the space of estimated demixing matrices to those that are orthogonal. However, a proof of the identifiability conditions for orthogonal ICA methods has not yet been presented in the literature. In this paper, we derive the identifiability conditions, starting from the orthogonal ICA maximum likelihood cost function. We then review efficient optimization approaches for orthogonal ICA defined on the Lie group of orthogonal matrices. Afterwards, we derive a new efficient algorithm for orthogonal ICA, by defining a mapping onto a space of constrained matrices which we define as hyper skew-symmetric. Finally, we experimentally demonstrate the advantages of the new algorithm over the pre-existing Lie group methods.