2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-15.4
Paper Title DEEP DETERMINISTIC INFORMATION BOTTLENECK WITH MATRIX-BASED ENTROPY FUNCTIONAL
Authors Xi Yu, University of Florida, United States; Shujian Yu, NEC Laboratories Europe, Germany; Jose C. Principe, University of Florida, United States
SessionMLSP-15: Learning Algorithms 2
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-INFO] Information-theoretic learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We introduce the matrix-based Renyi's $\alpha$-order entropy functional to parameterize Tishby et al. information bottleneck (IB) principle with a neural network. We term our methodology Deep Deterministic Information Bottleneck (DIB), as it avoids variational inference and distribution assumption. We show that deep neural networks trained with DIB outperform the variational objective counterpart and those that are trained with other forms of regularization, in terms of generalization performance and robustness to adversarial attack.