2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-20.5
Paper Title A structure-guided and sparse-representation-based 3D seismic inversion method
Authors Bin She, Yaojun Wang, Guangmin Hu, University of Electronic Science and Technology of China, China
SessionSPTM-20: Signal Processing over Graphs and Sparsity-Aware Signal Processing
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Signal Processing Theory and Methods: [SSP] Statistical Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Existing seismic inversion methods are usually 1D, mainly focusing on improving the vertical resolution of inversion results. A few 2D or 3D inversion techniques are either too simple and lack the consideration of stratigraphic structures, or are too complicated which need to extract dip information and solve a complex constrained optimization problem. In this work, with the help of gradient structure tensor (GST) and dictionary learning and sparse representation (DLSR) technologies, we propose a 3D inversion approach (GST-DLSR) that considers both vertical and horizontal structural constraints. In the vertical direction, we investigate the vertical structural features of subsurface models from well-log data by DLSR. In the horizontal direction, we obtain the stratigraphic structural features from a 3D seismic image by GST. We then apply the acquired structural features to constraint the entire inversion procedure. The experiments show that GST-DLSR takes good advantages of both techniques, enabling to produce inversion results with high resolution, good lateral continuity, and enhanced structural features.