2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-36.4
Paper Title DYNAMIC TEXTURE RECOGNITION VIA NUCLEAR DISTANCES ON KERNELIZED SCATTERING HISTOGRAM SPACES
Authors Alexander Sagel, Julian Wörmann, Hao Shen, fortiss - The Research Institute of the Free State of Bavaria, Germany
SessionMLSP-36: Pattern Recognition and Classification 1
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-PRCL] Pattern recognition and classification
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Distance-based dynamic texture recognition is an important research field in multimedia processing with applications ranging from retrieval to segmentation of video data. Based on the conjecture that the most distinctive characteristic of a dynamic texture is the appearance of its individual frames, this work proposes to describe dynamic textures as kernelized spaces of frame-wise feature vectors computed using the Scattering transform. By combining these spaces with a basis-invariant metric, we get a framework that produces competitive results for nearest neighbor classification and state-of-the-art results for nearest class center classification.