2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-9.2
Paper Title BAYES-OPTIMAL METHODS FOR FINDING THE SOURCE OF A CASCADE
Authors Anirudh Sridhar, H. Vincent Poor, Princeton University, United States
SessionSPTM-9: Estimation, Detection and Learning over Networks 3
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing Theory and Methods: Signal Processing over Networks
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We study the problem of estimating the source of a network cascade. The cascade initially starts from a single vertex and spreads deterministically over time, but only a noisy version of the propagation is observable. The goal is then to design a stopping time and estimator that will estimate the source well while ensuring the number of affected vertices is not too large. We rigorously formulate a Bayesian approach to the problem. If vertices can be labelled by vectors in Euclidean space (which is natural in spatial networks), the optimal estimator is the conditional mean estimator, and we derive an explicit form for the optimal stopping time under minimal assumptions on the cascade dynamics. We study the performance of the optimal stopping time on lattices, and show that a computationally efficient but suboptimal stopping time which compares the posterior variance to a threshold has near-optimal performance.